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We study two nonequilibrium lattice models exhibiting a continuous phase transition from an active
state to an absorbing state in which the system is trapped. The models have infinitely many absorbing
states. We use one of the models to illustrate how finite-size scaling concepts may be used to enhance
computer-simulation studies of the critical behavior. This model is also studied using ordinary steady-
state scaling concepts. The results show that the model has the same critical behavior as directed per-
colation. The applicability of time-dependent simulations, which have proven very efficient in the study
of systems with a single absorbing state, is explored extensively using several different initial

configurations.

PACS number(s): 05.50.+q, 02.50.—r, 05.70.Ln

I. INTRODUCTION

The study of nonequilibrium many-particle systems is
an important problem in many branches of physics,
chemistry, biology, and even sociology [1,2]. Some of
these systems are known to exhibit kinetic phase transi-
tions; in particular, numerous models have been proposed
in order to study the phenomenon of continuous phase
transitions. A simple example is the contact process (CP)
[3-5], which was introduced as a model of an epidemic.
In the CP particles annihilate with probability p or else
create a new particle at a randomly chosen nearest neigh-
bor provided it is vacant. In addition to the trivial ex-
tinct state, the CP has an active steady state (a state in
which the population survives indefinitely) for all d =1
when p <p.(d) [4,5]. The CP may be seen as a lattice
version of Schlogl’s first model [6—8], which is defined in
terms of the reaction scheme X—2X, X=0. If we dis-
card the spontaneous creation process, 0— X, we are left
with an autocatalytic chemical reaction whose lattice ver-
sion obviously is closely related to the CP. In computer
simulations of the CP one usually uses sequential updat-
ing. If we use simultaneous updating, we arrive at a cel-
lular automaton [9—11]. As a cellular automaton, the
contact process is closely related to dynamical directed
percolation (DP) [12-15]. It has been shown that
Schlogl’s first model [16,17] and directed percolation [13]
are equivalent to Reggeon field theory (RFT) [18-22]. So
far we have considered only one-component models. In
recent years multicomponent models have attracted a
great deal of attention. The best known example is prob-
ably the monomer-dimer model of Ziff, Gulari, and
Barshad (ZGB) [23-26]. This model was proposed in or-
der to study the oxidation of carbon monoxide on a cata-
lytic surface. The ZGB model exhibits a second-order
phase transition from an oxygen-covered state to an ac-
tive state and a first-order transition to a CO-covered
state.
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One of the major achievements in the study of non-
equilibrium phase transitions is the discovery that all of
the models mentioned above belong to the same univer-
sality class. The study of many other models [27-38]
demonstrates the robustness of DP critical behavior in
spite of quite dramatic differences in the evolution rules
of the various models. Presently there is substantial evi-
dence in favor of the hypothesis that models with a scalar
order parameter exhibiting a continuous transition to a
unique absorbing state generically belong to the univer-
sality class of directed percolation. This DP conjecture
was first put forward by Grassberger [8] and Janssen [7]
and later extended by Grinstein, Lai, and Browne [25] to
multicomponent models.

The universality of DP critical behavior for models
with a unique absorbing state is well established, but the
study of models with more than one absorbing state is
still in its infancy. That models with more than one ab-
sorbing state can exhibit new critical behavior was first
demonstrated by Grassberger, Krause, and von der Twer
[39] in a study of a model involving the processes X —3X
and 2X —0. This model is very similar to a class of mod-
els known as branching annihilating walks (BAW’s) [36].
In the BAW a particle jumps, with probability p, to a
nearest neighbor, and if this site is occupied both parti-
cles annihilate. With probability 1—p the particle pro-
duces n offspring which are placed on the neighboring
sites. If an offspring is created on a site which is already
occupied, it annihilates with the occupying particle leav-
ing an empty site. For n even these models have non-DP
behavior [37], while for n odd the behavior is compatible
with DP [38]. Note that in both the model proposed by
Grassberger, Krause, and von der Twer and in BAW’s
with an even number of offspring the number of particles
is conserved modulo 2. This conservation law might be
responsible for the non-DP behavior.

At present there are no clear ideas about the possible
universality classes for models with more than one ab-
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sorbing state; e.g., do a wide variety of models exhibit a
similar, though possibly non-DP, critical behavior, or
does each model have its own? In this paper we study
models with infinitely many absorbing states, or, to be
more precise, models in which the number of absorbing
states grows exponentially with system size. Earlier stud-
ies of dimer-trimer [40] and dimer-dimer [41] reactions
suggested that such models might have non-DP critical
behavior. These results were, however, cast into doubt
by a study of the pair contact process (PCP) [42], which
yielded DP critical exponents for a one-dimensional mod-
el with infinitely many absorbing states. In this paper we
report further results for the pair contact process and re-
sults for a new model, the dimer reaction model. The
one-dimensional versions of both models belong to the
DP universality class.

The remainder of this paper is organized as follows. In
Sec. II we introduce the models and the phenomenology
concerning their critical behavior. In Sec. III we report
results from computer simulations of the PCP and de-
scribe important concepts and various computer-
simulation methods pertinent to the study of continuous
phase transitions. Section IIT A covers steady-state scal-
ing and Sec. III B contains a thorough description of
finite-size scaling concepts. Time-dependent simulations
have proven very efficient in the study of models with a
unique absorbing state. The applicability of this method
to models with infinitely many absorbing states is studied
in Sec. ITI C. Our results on the dimer reaction model are
reported in Sec. IV.

II. MODELS WITH INFINITELY MANY
ABSORBING STATES

The systems considered in this paper are nonequilibri-
um lattice models or interacting particle systems [4,5]
evolving according to a Markov process with local, in-
trinsically irreversible transition rules. The models typi-
cally involve spontaneous annihilation of particle clusters
with probability p, independent of the states of sites out-
side the cluster; autocatalytic creation of particles with a
probability depending on the number of occupied sites in
some neighborhood of the vacancy; and diffusion of parti-
cles. When both creation and annihilation are contingent
on the presence of clusters of two or more particles, the
evolution may terminate in one of many absorbing
configurations. In addition to these trivial states the sys-
tems may possess (in the infinite-size limit) a nontrivial
(““active”) steady state when p is sufficiently small. The
region of the phase diagram in which there is an active
steady state is called the supercritical region, as opposed
to the subcritical region, in which the absorbing states
are the only steady states. The models studied in this pa-
per exhibit a continuous phase transition from the active
to the absorbing states at some critical value p.. The or-
der parameter p decays asymptotically as p<(p.—p )8
when p—p, —. Figure 1 illustrates the general ideas
mentioned above by showing the “phase diagram” for the
pair contact process, which will be defined below.

The pair contact process is a simple one-component
model in which nearest-neighbor pairs of particles annihi-
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FIG. 1. The steady-state concentration of pairs in the pair
contact process as a function of the pair annihilation probabili-
ty. For p <p.=~0.0771 the system is in the supercritical region
and has an active steady state. At p. the model exhibits a con-
tinuous phase transition to the absorbing state. The region
p>p. is called the subcritical region and here the absorbing
state is the only steady state.

late each other (with probability p) or else create (with
probability 1—p) a particle at a randomly chosen nearest
neighbor provided it is vacant. Since the creation of a
particle next to a pair creates at least one additional pair,
the evolution rules for pairs are very similar to those for
particles in the CP. The absorbing state is now one
without pairs and in this sense it is unique, but there are
many such states from the particle point of view. The
number of absorbing states is >2%?2 on a one-
dimensional (1D) lattice of N sites. The evolution rules
for pairs suggest that this model should exhibit the same
critical behavior as the contact process, assuming that
the concentration of pairs is the appropriate order pa-
rameter. However, the existence of infinitely many ab-
sorbing states on the particle level could lead to a new
critical behavior. Steady-state simulations of the one-
dimensional version, including a thorough finite-size scal-
ing analysis, presented in Secs. III A and III B, are, how-
ever, consistent with the same critical behavior as the
contact process.

We have studied another model which exhibits a con-
tinuous phase transition from an active steady state to
one of a multitude of absorbing configurations. The di-
mer reaction model (DR) is based on a simpler model in-
troduced by Browne and Kleban (BK) [30]. In the BK
model particles rain down on a lattice at some constant
rate, and adsorb (at least temporarily) at vacant sites.
Suppose a particle has just adsorbed at site i. If all of the
neighbors of i are vacant, the particle remains at i, but if
one or more of the neighbors is occupied, the particle
remains only with probability p. With probability 1—p
there is a reaction between the new arrival and one of the
neighboring particles (chosen at random, if there is a
choice), which removes these two particles from the lat-
tice. For small p the process attains an active steady
state, but as p —p,. there is a continuous transition to the
absorbing state with all sites filled. For the one-
dimensional BK model, p.=0.2765(5). The transition
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belongs to the directed percolation class [31].

In the DR (on a one-dimensional lattice) particles may
not occupy neighboring sites. if sites i, i —1, and i +1 are
vacant, we say that site i is open; adsorption happens only
at open sites. If we think of the sites as corresponding to
bonds in the dual lattice, the particles correspond to di-
mers occupying bonds in the dual lattice. Suppose a par-
ticle has just arrived at site i. If sites i—3, i—2, i+2,
and i +3 are all vacant, the particle remains. If any of
the four sites is occupied, the new particle reacts with one
other particle with probability 1—p and remains with
probability p. The second neighbors have priority in the
reaction: the new particle can react with a third neighbor
only if both second-neighbor sites are empty. The reac-
tion rules are illustrated in Fig. 2. We note that reactions
with third neighbors are essential, for without them there
is no active steady state even for p =0. We do not believe
second-neighbor priority to be essential for the existence
of an active steady state.

There are many absorbing states for the DR: any
configuration without a three-site vacancy cluster, i.e.,
devoid of open sites. Of these absorbing states, the one
with maximal particle density consists of alternating va-
cant and occupied sites; in the one with minimal density,
occupied sites alternate with pairs of vacant sites. Clear-
ly any sequence . . . OGOGOGO . . ., where O means oc-
cupied and G is a one- or two-site gap, is absorbing. The
obvious choice for the order parameter is the density of
open sites p,. For p =0 simulations yield p, =0.6; they
show p, decreasing continuously to zero as p approaches
P.==0.2640. At the same time p,, the particle density, in-
creases from zero to about 0.418(1) at the transition. For
p=1 (no reactions) the DR becomes dimer random
sequential adsorption, for which p,=(1—e ~2)/2
=0.43233... [43,44]. We studied the DR in three kinds
of simulations, which focused on (1) the mean poisoning
time, starting from an empty lattice, (2) the steady-state
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FIG. 2. Dimer reaction rules involving a newly adsorbed par-
ticle (at the center of the cluster) and a second or third neigh-
bor. The total reaction probability (given a neighbor) is
g =1—p. Reaction probabilities (i.e., for the first and third pro-
cesses) are symmetric under reflection.

behavior of the open site and particle densities, and (3)
the survival probability, number of open sites, and
spreading of open sites, starting from a configuration
with a single open site.

Models with infinitely many absorbing states arise nat-
urally in the study of reactions catalyzed by a surface as
soon as the absorption mechanism for the various species
(normally two) require more than one vacant site. Two
such models, the dimer-trimer model [40] and the dimer-
dimer model [41], have been introduced recently.

The dimer-trimer model is a variation of the ZGB
model. Dimers 4, may adsorb onto a nearest-neighbor
pair of vacancies and subsequently dissociate. Likewise,
a trimer B; may undergo dissociative adsorption onto
three nearest-neighbor vacancies. 4 and B nearest-
neighbor pairs react instantly and the product A4B
desorbs. A4, adsorption is attempted with probability p
and B, adsorption with probability 1—p, thus making p
the only control parameter. Computer simulations [40]
on triangular lattices showed that this model has a phase
diagram with a trimer saturated state for p <p,, a dimer
saturated state for p >p,, and an active steady state for
intermediate values. A saturated state is a configuration
where only isolated empty sites are left. Such a state is
obviously an absorbing state for the process, and one im-
mediately notices that the number of such states grows
exponentially with system size. The transition at
p1=0.3403(2) is continuous, whereas the transition at
p,=0.4610(8) is discontinuous. Critical exponents [ ,
and By describing, respectively, the behavior of the con-
centrations of 4 and B near p, may be defined as
pa<(p—p)’* and p§'—py(p—p,)Pe, where p§' is
the saturation concentration of B at p,. Steady-state
computer simulations [40] yielded B ,=0.80(6) and
Bp=0.63(5). While the estimate for B 4 is well above the
DP value 0.57, the estimate for Bz could be consistent
with DP behavior. The dimer-trimer model was also
studied using time-dependent simulations (see Sec. IIIC
for a description of this method). As there is no unique
absorbing state in this model, one has to make a choice of
initial configuration. ben-Avraham and Kohler chose to
start each run on a different random configuration, an ab-
sorbing state except for a triplet of vacancies at the
center. They estimated that 8=0.40+0.01,
7n=0.28%0.01, and z=1.19%0.01. These exponent esti-
mates clearly differ from the DP values [15],
6=0.460%0.006, n=0.214%0.008, and z =1.134+0.004,
suggesting that the dimer-trimer model belongs to a new
universality class. Note, however, that the exponents do
not satisfy the hyperscaling relation dz=48-+27n [17].
This could signal that the numerical values had not yet
converged to their asymptotic values or that the error
bars are not conservative enough.

The dimer-dimer (DD) model for the oxidation of hy-
drogen on a metal surface is based on the Langmuir-
Hinshelwood mechanism (both reactants are adsorbed on
the surface). The model was studied in two versions. In
the first model, DD1, O, adsorption is attempted with
probability p and H, adsorption with probability 1—p.
Both O, and H, require a nearest-neighbor pair of vacan-
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cies and will dissociate upon adsorption. Nearest-
neighbor H and O react to form OH residing on a single
site. OH will react with H (OH) forming H,O (leaving
behind one O) which desorbs immediately. In addition,
H is allowed to diffuse on the surface. The second model,
DD2, is like DD1 except that if H, is adsorbed but does
not react it will recombine and leave the surface at once.
The DD1 model exhibits two continuous phase transi-
tions. When p <p,, the steady state is an absorbing state
with a mixture of adsorbed O and OH, and isolated single
vacancies. When p >p, the lattice becomes completely
covered with H, which is thus a unique absorbing state.
For p, <p <p, there is an active steady state with an
ongoing production of H,O. Computer simulations of
the DD1 model in the vicinity of p, yielded estimates for
the critical exponents describing the behavior of the con-
centration 01f adsorbed particles in this . region:

pu (p—py)™ and p84 on—po —pou = (p —p1)", where
P& on=0.907 is the saturation value of O and OH cov-
erage. Albano [41] estimates that B;=B,~ 1 with an un-
certainty of approximately 5-10%. The similar ex-
ponents describing how pg, poy, and 1—py vanish at p,
were found to be 2, again with an estimated uncertainty
of 5-10%. The former result may be seen as an indica-
tion of a new universality class, though the results could
be marginally consistent with DP behavior, ==0.57.
The latter result is very surprising, as the transition at p,
is into a unique absorbing state. As the DD2 model in-
cludes recombination and desorption of H,, this model
has only one phase transition at p(12) from an active state
to an absorbing state containing O, OH, and isolated va-
cancies. For this model it was found [41] that B(}f)z%
and Bg)z%, again with an uncertainty of about 5—10 %.
These results are again marginally consistent with direct-
ed percolation. In view of the difficulty in establishing
the critical behavior of the dimer-dimer and dimer-trimer
models, we decided to perform extensive studies of the
PCP and the DR, which present infinitely many absorb-
ing states in the simpler context of single-component,
one-dimensional models.

III. RESULTS FOR THE PAIR
CONTACT PROCESS

In this section we report the results of extensive com-
puter simulations of the pair contact process. We
demonstrate how steady-state and finite-size scaling con-
cepts may be used to study nonequilibrium models with
infinitely many absorbing states. The results place the
PCP firmly in the DP universality class. Finally, we ex-
amine the applicability of time-dependent simulations to
models without a unique absorbing state. Our results
show that estimates for the critical exponents depend
crucially on the way in which we prepare the initial
configuration. As shown in Sec. III C, we obtain DP ex-
ponents only when using system-generated critical ab-
sorbing states as initial configurations.

A. Steady-state behavior
In this section we discuss the static critical behavior of
the models introduced above. Critical points are charac-
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terized by power-law divergencies of the correlation
length and the relaxation time. Consequently, in order to
obtain reliable results close to the critical point, one has
to study large systems over long times, which means a
heavy demand of CPU time. One normally starts the sys-
tem far from any absorbing state, e.g., in the case of the
PCP, with all sites occupied. Starting from this state, one
lets the system evolve until, after a relaxation time 7, the
steady state is obtained. Once in the steady state, one
makes data measurements at various time intervals up to
some preset maximal time and performs a time average.
Figure 3 shows a typical time evolution for the concen-
tration of pairs in the PCP. An ensemble average is ob-
tained by averaging the results from several independent
samples. In the absence of evidence to the contrary, one
assumes that the ensemble average equals the time aver-
age.

1. Critical behavior

If we assume that the critical behavior is described by
generalized homogeneous functions, a simple conse-
quence is that quantities such as the order parameter, the
susceptibility, etc., have power-law dependence close to
the critical point [45]. In particular, we find that the or-
der parameter p (where the bar will be used to indicate
the steady-state value) decays as

p=lp.—pl? (1)

in the supercritical regime, where f3 is the order parame-
ter critical exponent. Likewise, we expect that the “sus-
ceptibility” ¥ per site behaves as

X=Lp*)—(p))=|p.—p|7", )

where L is the linear extension of the system. We call ¥
the susceptibility because it is a quantity analogous to the
susceptibility as defined for equilibrium magnetic sys-
tems. Actually, ¥ is just a measure of the typical size of
fluctuations. The divergence of the susceptibility shows
that fluctuations become dominant as one approaches the
critical point. In Fig. 4 we have plotted p and Y in the
PCP as a function of the distance from the critical point
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FIG. 3. Typical time evolution for the concentration of pairs
of the pair contact process for system size L =4096 at
p=0.0771.
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p.—p on a log-log scale, where we used p. =0.0771. We
will justify our choice for p, in the next section. The re-
sults for p and ¥ were obtained by averaging over typical-
ly 100 independent samples. The number of time steps
and system sizes varied from ¢=5000, L =512 far from
p. to t=500000, L =8192 closest to p.. One clearly sees
that the power-law behavior is confirmed, although the
results for ¥ are somewhat messy. From these results we
estimate that =0.28(1) and y=0.53(5), where the
figure in parentheses indicates the estimated uncertainty
on the last digit. These results are in good agreement
with the typical estimates for directed percolation in
(1+1) dimensions B=0.2769(2) [46] and y=0.544(1)
[47,48].

Note that Egs. (1) and (2) hold true only in the limit of
infinite system size. As in equilibrium second-order
phase transitions we assume that the (infinite-size) non-
equilibrium system features a length scale which diverges
at criticality as

Ep)e<lp.—pl ™, (3)

where v, is the correlation length exponent in the space

T T T T T T T T

P~ P

10 T T

074 1073 1072 10!

FIG. 4. Panel (a) shows a low-log plot of the steady-state
concentration of pairs g vs the distance from the critical point
with p.=0.0771. The slope of the line is §=0.277. Panel (b)
shows a log-log plot of the steady-state susceptibility ¥ vs the
distance from the critical point with p, =0.0771. The slope of
the line is ¥y =0.53.
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direction. Any measurable quantity will depend strongly
on system size once the correlation length becomes com-
parable to the linear extension L of the system. A further
complication in steady-state simulations is the divergence
of the relaxation time near the critical point. Letting 4
denote some characteristic time scale, e.g., the time it
takes to reach the steady state, we assume that when p, is
approached from the subcritical region

trp)=lp.—pl 1, @)

where v is the correlation length exponent in the time
direction. Thus a typical time signal from a system near
criticality will exhibit large fluctuations with long life-
times, as seen in Fig. 3.

B. Finite-size scaling

The applicability of steady-state computer simulations
has been greatly enhanced by finite-size scaling methods.
The idea of finite-size scaling was pioneered by Fisher
and co-workers in the early 1970s [49,50]. Here we will
follow the work of Aukrust, Browne, and Webman [31]
and show how finite-size scaling of static and dynamic
quantities may be used to determine p, various critical
exponents.

From the nature of the models studied, it is clear that
when the system is small it will enter the absorbing state
fairly quickly, even for values of p in the supercritical re-
gion. In Fig. 5(a) we show the concentration of pairs as a
function of time at p=0.0771 for a system of size
L =128. p(t) almost immediately reaches a reasonably
steady value somewhat obscured by large fluctuations.
After the system has reached this quasisteady state, it can
spend a long time there before it finally enters the absorb-
ing state. Figure 5(b) shows p,(p,L,t)={p(p,L,t,s))
versus ¢ for various values of L at p =0.0771. p(p,L,t,s)
is the coverage fraction for a particular sample s; the sub-
script s will be used to indicate that the average is taken
over the surviving samples, i.e., the average includes only
those samples which have not yet entered an absorbing
state. The number of initial samples varied from 2000 for
L =128 to 250 for L =2048; in all cases at least 200 sam-
ples survived to the end of the simulations. Figures 5(a)
and 5(b) show that in spite of a strong tendency to enter
the absorbing state, p, does attain a well-defined value
and we can thus study p,(p,L) as a function of p and L in
the critical region.

1. Static behavior

We expect finite-size effects to become important when
the correlation length &(p) < |p—p,| "*~L, so that the
basic length is the scaled length L /&(p)~L|p—p,|™-
The ansatz underlying finite-size scaling is that the vari-
ous quantities depend on system size through the ratio
L /&p), or equivalently through the variable

1/v
|lp.—p|L " ‘. Thus we assume that the order parameter
depends on system size and distance from the critical
point as

B

ps(p, L)L /V*f((p-—pc)Ll/vl) , (5)
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such that at p,

—B/v,

ps(p., L)L (6)

and

flx)<xP for x—>o , (7)

so that Eq. (1) is recovered when L — o in the critical re-
gion. For values of p in the supercritical regime p;
should be independent of L for L >>£(p). In the subcriti-
cal regime one expects p, to decay faster than a power
law. Thus p, may be determined as the value of p yield-
ing a straight line in a log-log plot of p, versus L.

For the susceptibility we expect

x.(p, L)< L" g ((p—p, )L™ ®)

and

r/v,

Xs(pe,L) <L 9)

Figure 6(a) shows the average concentration of pairs
ps(p,L) in the quasisteady state as a function of L on a
log-log scale for various values of p in the critical region.
From this we clearly see that p =0.0771 is compatible
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FIG. 5. Panel (a) shows the time evolution of the concentra-
tion of pairs for L =128 and p =0.0771. Panel (b) shows the
average number of pairs in the surviving samples, {p(p,L,t)),
as a function of time at p=0.0771, with from top to bottom
L =128, 256, 512, 1024, and 2048.

with a power-law behavior, whereas p =0.0770 is super-
critical and p =0.0772 is subcritical, leading to the esti-
mate p, =0.0771(1). Figure 6(b) shows a log-log plot of
the susceptibility x,(p.,L) as a function of L. The num-
ber of time steps ¢ and independent samples N varied
from ¢=1000, N=25000 for L=16 to t=500000,
N=100 for L =8192. From the slopes of the critical
curves we estimate that /v, =0.255(5), which when
combined with the standard DP value $=0.277(1) yields
v,=1.09(3) and ¥y /v;=0.50(1) and thus y=0.55(4), in
good agreement with the direct estimate given above.
The estimate for v, is also in excellent agreement with the
more precise estimate v,=1.0972(6) obtained from
transfer-matrix methods [47]. From the graphs in Fig. 6
we see that the slope for small L already reflects the
relevant exponent ratio /v, or y/v,, while the off-
critical evolutions veer off the simple power law for large
L. Thus finite-size scaling analysis can yield reliable in-
formation on exponents using even small system sizes
(L =200). Large-L studies are needed to fix the critical
point with precision.

In the quasisteady state one may also study the proba-
bility distribution function P;(p,) for p (p.,L) as one
varies the system size L. In the critical region one can

10%
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10'1_ + p=00768 °
10 p=00770 « e
x p=00771
o p=00772 <
x p=00774
10! 102 10° 10t
L
104
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1011
TOO — T — T — T
10! 102 10° 0t
L

FIG. 6. (a) ps(p,L) vs L for various values of p and (b)
Xs(pe,L) vs L. The slopes of the lines are (a) 8/v,=0.254 and
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express the distribution function in terms of a scaling
function P as [31,51]

P, (p,)=L""P(p,L"" /L) . (10)

In Fig. 7(a) we plot P (p,)L P versus psLB/VL, and as
one would expect from Eq. (10) we see the data collapse
onto a single curve. The inset shows the unscaled data.
A consequence of this scaling collapse is of course that
the position of the maximum of the probability distribu-
tion function scales as X,,,,(L) <L ~#/"., and the value at

the maximum scales as Y, (L) w1, Figure 7(b),
which shows X_ .. and Y_,, as functions of L, clearly
demonstrates this fact. Once we have the probability dis-
tribution we can calculate the various moments
(pF)= f(l)kaL(p)dp. In Fig. 7(c) we show a log-log plot
of {p) and y=L({p?*)—{p)?) as a function of the sys-
tem size L. From Eq. (10) it follows that {p) <L ~A/",
where we naturally recover the earlier result of Eq. (6),
and {(p?)<L %", from which we get that
)(=Ld((p2>—(p)z)oﬂL(dvfzﬁVVl. If we compare this
with the earlier result, Eq. (9), we see that the exponents
B, v|, and ¥ must obey the hyperscaling relation

y=dv,—28 . (11)

In Fig. 7(c) the expected power-law behavior is clearly
seen, and the slopes of the lines yield the estimates
B/v,=0.255(5) and y/v,=0.50(1), in full agreement
with earlier estimates.

2. Dynamical behavior

So far we have concerned ourselves mainly with the
static scaling behavior; now we turn our attention to the
dynamical behavior, i.e., the scaling properties of time-
dependent quantities. There are several ways of defining
a characteristic time 7 for the system under investigation.
Aukrust, Browne, and Webman chose to measure the
average time for a system to enter the absorbing state,
defined as the sample average of the quantity

Tj:ztp(p,L,t,s)/zp(p,L,t,s) . (12)
t t

We can see that 7, is a measure of a characteristic time
for a particular sample to cover by taking the example of
a pure exponential relaxation for p(z), where if
p(t) <exp(—t/a), then 7, ~a.

One may also define 7 as the time it takes to p(L,?) to
reach the quasisteady state. In this study we have chosen
to define 7(p, L) as the time it takes for half the sample to
enter an absorbing state. For values of p deep in the sub-
critical region or for small system sizes, 7(p, L) is natural-
ly small. Equation (4) leads to the finite-size scaling form

l/vl) , (13)

7(p,L)x<L*h((p—p.)L

where y =wv, /v, is the usual dynamical exponent, similar
to the one defined in equilibrium cases [52]. At p. we
thus have

T(pe, L)< L7 . (14)
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FIG. 7. Panel (a): P, L B s L for p=0.0771 for vari-

ous system sizes L with /v, =0.255. The inset shows the un-
scaled data. Panel (b): The maximum Y,,, of P;, and its posi-
tion X, vs L on a log-log scale. The slopes of the lines are
B/v,=0.255 from Y, and —f/v,= —0.255 from X,,,. Panel
(c): Log-log plot of {p) and y=L({p?)—{p)? vs L, where the
averages are obtained as the first and second moments of the
probability distribution Py (p) at p.. The slopes of the lines are
—pB/v,=—0.255 from p and y /v,=0.50 from y.
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In the supercritical regime any finite system will eventu-
ally enter the absorbing state. However, one expects that
7(p,L) will grow faster than a power law in L. Figure 8
shows 7(p,L) as a function of L for values of p in the crit-
ical region. Again we see the off-critical curves veering
away from a power-law behavior, confirming that
p.=0.0771. The slope of the curve for p, leads to the es-
timate y =1.59(3). Using the (1+1)-d directed percola-
tion values [47] v=1.733(1) and v, =1.0972(6), we have
y=wv,/v,=1.579(2), which is in excellent agreement with
our estimate.

One may also study the dynamical behavior by looking
at the time dependence of the mean fraction p(p,,L,?) of
pairs at p.. Note that this quantity is different from p,
because we now take the average over all samples, includ-
ing the ones that have entered the absorbing state. For
t >>1 and L >>1 one can assume a scaling form

pp Lty L P p(e /LYy . (15)

In Fig. 9 we have plotted p(p.,L,t)L P71 as a function of
t /L’, with the inset of that figure showing the unscaled
data. As can be seen, one can obtain a very good data
collapse, confirming the validity of the scaling assump-
tion. At p, the system shows a power-law behavior for
t <L” before finite-size effects become important. Thus
for L>>1 and t<L” we have that p(p,,L,t)<t°.
From Eq. (15) we see that this is the case for large L only
if the scaling relation

0=B/(viy)=B/v, (16)

holds. Using the unscaled data in Fig. 9 we obtain, from
the short-time behavior, the estimate 6=0.160(5). This
is in excellent agreement with directed percolation, for
which the earlier cited estimates yields 6=//v,
=0.1598(3).

C. Time-dependent behavior

In this section we will discuss another way of studying
models with absorbing states. This method, pioneered by
Grassberger and de la Torre [17], utilizes the fact that the
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FIG. 8. 7(p,L) vs L for various values of p in the critical re-
gion. The slope of the line yields the value y =v, /v|=1.59.
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FIG. 9. plpo,L,t)L""™" vs t/L” with B/v,=0.254 and
y=1.59 for various values of L. The inset shows the unscaled
data, with from left to right, L =16, 32, ...,2048.

model has absorbing states by studying the evolution of
an ensemble of systems, each of which starts close to a
“typical” absorbing state. One can then ask questions
such as, What is the probability that particles are still
present at time ¢, and how many particles are there on the
average? In the case of the ordinary contact process one
would choose to start all systems with just one particle at
the center of the lattice. However, in the case of models
with infinitely many absorbing states we are faced with a
problem, because it is not clear which initial
configuration to use. As will become evident in the fol-
lowing, the estimates for the critical exponents depend
strongly on the choice of initial configuration (the esti-
mates for p,. are far less sensitive).

1. Scaling ansatz

According to the scaling hypothesis [17], one expects
that any function of x, ¢, and A (where A=p_.—p) de-

pends on these variables only through x2/t% and INRAC
times some power of x2, t, or A. As before, v is the
correlation length exponent in the time direction and z is
not the dynamic exponent of equilibrium critical phenom-
ena. For the particle density one expects

plx,t) 114 2F(x2 /17 A

), (17)
and for the probability of survival, i.e., the probability
that the system has not entered the absorbing state at
time ¢, one expects

l/v“) ,

P(t)<t %¢(At (18)

where 77 and 8 are further critical exponents, while F and
¢ are universal scaling functions.

From Eq. (17) one finds for the mean number of parti-
cles 71(¢) and the mean-square distance of spreading R *(¢)

A= [d% plx,0)<tf (A ") (19)

and
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l/v”

R%n)= ). (20)

Notice that in simulations 7 (¢) is averaged over the sur-
viving samples only. From Egs. (18), (19), and (20) one
immediately sees that if ¢(y), f(y), and g(y) are non-
smgular at y =0, the asymptotic behavior of P(t), 7 (t),
and R%(t) as t—o at p, determines the critical ex-
ponents 8, 17, and z:

P(t)ect ™8 (1)
()<t (22)
R*(t)=t?. (23)

Away from the critical point, the behavior departs from a
power law. In plots of InP(z), In7i(¢), and InR (¢) versus
Inz we should see asymptotically a straight line at p =p,.
The curves for P(t) and 7 (¢) often have distinct positive
(negative) curvature in the supercritical (subcritical) re-
gime. This permits one to obtain a precise estimate for
p.- The asymptotic slopes of the curves at the critical
point define the dynamic critical exponents 8, 7, and z.
The power-law behavior at criticality is often modified by
corrections to scaling, so that, e.g., P(¢) is more accurate-
ly given by

P(t)<t 8(14at "+br ¥+ -1, (24)

Similar expressions are expected to hold for 7(z) and
R*(t). In order to estimate the critical exponents it is
very useful to look at the local slopes:

In[P(2)/P(t/m)]
In(m) ’

and similarly for 7(¢) and z(¢). In the present work
m =5. In plots of the local slopes versus 1/t one sees
that the curves for the off-critical p values veer up or
down, corresponding to p lying in the supercritical or
subcritical regime, respectively. The critical exponents
can be determined from the intercept of the critical curve
with the y axis.

—&8(1)= (25)

2. Simulation results

In the simulations of the PCP presented here we al-
ways started, at =0, with a single pair at the origin.
The surrounding configurations were chosen in different
ways in order to check the sensitivity to the initial
configuration. In one set of simulations the lattice was
empty, in other simulations the sites were occupied at
random (according to various algorithms) but so that no
other pairs were present, and in the final set of simula-
tions we let the dynamics of the PCP itself generate an
absorbing state which we then used as the basis for the
initial configuration. As the number of pairs is very
small, the efficiency of the algorithm is greatly improved
by keeping a list of all pairs. In each step a pair is chosen
at random and removed with probability p. Otherwise, a
nearest neighbor is chosen randomly and a new particle is
placed there, provided the site is empty. After each at-
tempted change time is incremented by 1/n(t), where
n(t) is the number of pairs prior to the update. Thus one

time step equals on the average one attempted update per
lattice site. For each value of p investigated, a number
N of independent samples were simulated up to a maxi-
mal duration of ¢, time steps, though most runs stopped
earlier because all pairs had disappeared. In this study
we used Ng=(1-2)X 10° and ¢,, =2000.

Empty initial configuration. In this set of simulations
we start from an initial configuration consisting of an
empty lattice, with the exception of a particle-pair at the
center of the lattice. This state is certainly not close to a

-0.20

-0.21 4
-8
-0.22 4
-0.23 4
-0.24 4
-0.25 A
-0.26 A

*\

-0.27
0.00 0.01

0.02

1/t

o © o o229

= N o N N

[Ve) o — N [&N)
1 1 1 n 1 I 1 n 1

0.18
0.00 0.01 0
g 00
125
124 1
Z 4
123
122 -
1211
1w
0.00 0.01 0.02

1/t

FIG. 10. Local slopes —¥&(¢) (left panel), n(¢) (middle panel),
and z(¢) (right panel) as obtained from the simulation results
when starting from an empty lattice except for a single pair at
the central sites. Each panel contains four curves with, from
top to bottom, p =0.0770, 0.0771, 0.0772, and 0.0773.
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“typical” absorbing state of the PCP, but we study it here
in order to see just how sensitive the critical parameters
are to the initial configuration. In Fig. 10 we show the
local slopes —&(t), n(t), and z(t) versus 1/t for various
values of p in the vicinity of the critical point. As can be
seen, this initial configuration actually predicts the
correct value for p.. The estimates for the critical ex-
ponents §=0.250(5), n=0.215(5), and z=1.238(4) are,
however, not at all in agreement with those of directed
percolation §=0.160(1), 7=0.314(3), and z=1.266(7)
[17,22,46]. Note also that the critical exponents violate
the scaling relation [17] 46 +2n=dz, where d is the spa-
tial dimension of the lattice.

Random initial configurations. As we have just seen,
the “empty” initial configuration does not predict DP
critical exponents, and it is therefore of interest to ex-
plore other choices of the initial configuration. In this
section we study two random initial configurations which
might be closer to a typical absorbing state for the PCP.
In the first such configuration there are no correlations
except for nearest-neighbor exclusion. We generate this
configuration by occupying site i with probability 1, pro-
vided site i —1 is not occupied already. Figure 11 shows
the local slopes as obtained from this uncorrelated
configuration. This choice of initial configuration again
yields a p, value, in agreement with the time-independent
studies. This time the estimates for the critical exponents
6=0.130(5), n=0.335(10), and z=1.26(1) are closer to
the DP values, though definitely not in agreement with
them. The critical exponents again violate 48 +2n=dz,
although the discrepancy is smaller than in the case of
the exponents obtained from the “empty” initial
configuration.

The other random initial configuration is generated via
random sequential adsorption (RSA) with nearest-
neighbor exclusion. In RSA one starts from an empty
lattice. The dynamics is very simple, as we simply choose
a site at random and occupy it with a particle given that
all nearest neighbors are empty, i.e., every adsorbed par-
ticle excludes its nearest neighbors from being possible
adsorption sites. This procedure is continued until all
sites are either occupied or excluded by a nearest-
neighbor particle, i.e., we stop when there are no remain-
ing triplets of empty sites. Figure 12 shows the local
slopes as obtained from the RSA-type initial
configuration. We see once again that the initial
configuration predicts the correct value for p.. This time
the estimates for the critical exponents 8=0.0955(5),
n=0.38(1), and z=1.28(1) depart even further from the
DP values. Again the critical exponents do not satisfy
the scaling relation 46 +2n=dz.

System-generated initial configuration. In the final set
of simulations we use the dynamics of the PCP to gen-
erate the initial configuration. We do this by starting
with a small lattice of length L; completely covered with
particles. Then we let the dynamics of the PCP evolve at
the p value under investigation until an absorbing state is
reached. We now duplicate this absorbing state a num-
ber of times until the lattice used in the time-dependent
simulations is covered. The initial configuration thus
consists of a number of copies placed next to each other

of an absorbing state obtained from a fairly small lattice.
Remember that the lattice used in the time-dependent
simulations is quite large in order to ensure that no parti-
cles ever reach the borders. Once this initial
configuration has been generated, we place a particle pair
at the center of the lattice, while vacating the neighbors if
they happen to be occupied, so that we once again start
from a configuration with just a single particle pair. In
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Fig. 13 we show the local slopes as obtained by this pro-
cedure with L;=500. The results were obtained by
averaging over 100 different initial configurations and
1000 independent samples for each such configuration.
As usual, we see that the initial configuration predicts p,
correctly. This time the estimates for the critical ex-
ponents 8=0.160(3), 7=0.310(5), and z=1.260(5)
agree fully with the exponents for directed percolaton.
We have thus finally found a way to generate an ap-
propriate initial configuration.
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when starting from a configuration generated from random
sequential adsorption with nearest-neighbor exclusion. Each
panel contains four curves with, from top to bottom, p =0.0770,
0.0771, 0.0772, and 0.0773.
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3. Discussion

Above we have studied several ways of choosing an ini-
tial configuration to be used in time-dependent $imula-
tions. The simulation results clearly show that the *“best”
(if not only) way of choosing the initial configuration is to
use the system’s own dynamics to generate the basis for
the initial configuration. All the other ways we tried led
to critical exponents which differ significantly from the
expected DP values and which, moreover, violate hyper-
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state of a 500-site-long lattice. Each panel contains four curves
with, from top to bottom, p=0.0770, 0.0771, 0.0772, and
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scaling. The results do, however, contain two rather
surprising features. First of all, the measured quantities
still follow power laws, and secondly, p. is predicted
correctly irrespective of the initial configuration. The
only indication that something might be “wrong” thus
comes from the failure of the predicted exponent values
to obey the hyperscaling relation.

The “empty” initial configuration does not contain any
particles and is thus very untypical, and the production
of new pairs is suppressed. The chance of a pair having a
next-nearest-neighbor particle is very small, and each
new particle is unlikely to produce more than one addi-
tional pair (a pair turning into a triplet increases the
number of pairs by one). In a more realistic absorbing
state it would be quite likely that a pair had a next-
nearest-neighbor particle, and the eventual creation of a
new particle would thus be likely to produce two addi-
tional pairs. We believe this is reflected in the values for
the exponent, i.e., i is smaller and 8 is greater than the
DP values, showing that pairs are produced too slowly
and samples die out too quickly. The two random initial
configurations seem to lead to an overproduction of pairs
(n is larger than the DP value), probably because the
average concentration of particles is too large, and thus
likewise for the probability of finding a next-nearest-
neighbor particle to a given pair. This is certainly the
case with the RSA initial configuration, as there can nev-
er be more than two empty sites next to one another,
which clearly is a feature unrealistic of a “typical” ab-
sorbing state for the PCP.

An objection that can be raised to the arguments given
above is that one normally assumes that a system at criti-
cality should build up the correct correlations on its own.
In steady-state simulations one normally does not worry
about the initial configuration; e.g., in the simulations of
the PCP we could have started, say, from a random ini-
tial configuration with some preset concentration of
pairs. We would not expect this to influence the steady-
state behavior. There is, however, a major difference be-
tween steady-state and time-dependent simulations in
that in steady-state simulations we would always start
from a homogenous initial configuration, and as the sys-
tem evolves it will build up correlations and eventually
“forget” the initial configuration. In ' time-dependent
simulations we start from a highly inhomogeneous
configuration, as the locus of activity is restricted initially
to the origin. As a sample evolves from this state, the ac-
tivity of a surviving sample will spread out, and inside
this activity zone one might expect that the correct corre-
lations should build up. However, as the activity zone
spreads it will always meet the environment of the initial
configuration and there is thus no way in which the sam-
ple can erase the memory of the initial state. The local
environment for a growing cluster of pairs and leftover
particles in the “empty” configuration will always be void
of particles.

IV. THE DIMER REACTION MODEL
A. Study of poisoning times

A preliminary series of steady-state simulations indi-
cated that the critical point is near 0.2640. But since
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small uncertainties in p, can lead to substantial errors in
exponent estimates, we require a more precise value. A
reliable method for determining p, in models of this kind
is finite-size scaling analysis of the mean poisoning time
[31]. Starting with an empty lattice of L sites (with
periodic boundary conditions), we allow the process to
evolve until it becomes trapped in an absorbing
configuration. A set of M such evolutions are simulated
and the time 7(p,L) for exactly half the set to poison is
recorded. This procedure is repeated N times, and the
mean and standard deviation of the mean determined,
yielding our best estimate for 7(p,L) and the statistical
uncertainty of the estimate. We studied lattices of size
L =20-1000, with N decreasing from 2000 for
L =20-50 for L =1000; M =100 throughout.

As discussed in Sec. III B2, finite-size scaling theory
implies that at the critical point the lifetime has a power-

. v /v

law dependence on system size, 7(p,,L)<L ", For
p <p. T increases exponentially with L, while for p > p,
the growth is slower than a power law. Thus we can
determine the location of the critical point and also com-
pare the exponent ratio with its expected value. To
search for power-law behavior and at the same time devi-
ations from this exponent ratio, we plot In7— (v, /v )InL
versus InL, with v /v, =1.579. Off-critical reaction rates
show up as curved graphs in such a plot; a nonzero slope
of the linear (critical) graph signals an exponent ratio
different from that of DP. From the data shown in Fig.
14 it is clear that p, =0.264 00(5) (the graphs for 0.2639
and 0.2641 have noticeable curvature), and that there is
no significant deviation from the DP exponent ratio.
This is our first indication that the DR belongs to the
directed percolation class.

B. Steady-state simulations

We performed extensive steady-state simulations of the
DR on periodic lattices of size 1000, 2000,

FIG. 14. Int—v) /v, vs InL. 7 is the mean poisoning time,
starting from an empty lattice. Directed percolation values are
used for the exponents. +, p=0.2639; X, p=0.2640; 0O,
p=0.2641; W, p =0.2642.
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4000, . ..,32000. We monitored p, and Pp> discarding
results from the initial portion of any study which
showed transient behavior. Density estimates were de-
rived from a set of between 5 and 24 runs. Close to the
critical point successive runs may not be independent,
and so we used the block averaging procedure of
Flyvbjerg and Petersen in estimating uncertainties [53].
Estimates at a given p were obtained for a series of lattice
sizes until no significant change was observed upon dou-
bling L. The only exception to this rule is our last data
point, at p=0.2635 (quite near p,), for which the
L =16000 and 32000 studies yielded p,=0.106(3) and
0.112(2), respectively. Near the critical point we used
very long runs, extending to about 2 X 10° lattice updates
for the largest system size, and considerably more for
smaller lattices. We studied two or more (in most cases,
eight) independent realizations for the process to derive
our estimates.

The results of the steady-state simulations are shown in
Fig. 15. The order parameter exponent 3 is defined via
the expression p, < (p, —p )P, where p, is the density of
open sites. Similarly, we may define B through
Ppc—Pp <(p.—p )P, where Pp,c is the particle density at
the critical point. Analysis of the data involves two ad-
justable parameters p. and p,., which are, however,
tightly constrained by estimates obtained independently
of the steady-state simulations. Within the limits im-
posed by these estimates, we find the best linear fit on
log-log plots of p, and p, .—p, using p.=0.263 95 and
Pp,c =0.419. These are shown in Fig. 16. Straight-line
best fits to the 15 points nearest p, yield S=~0.286 and
B'=~0.297. Since we expect =/’ on general grounds
(there is no reason to suspect two critical fields [25]), we
estimate $=0.290(15), which is consistent with the DP
value B=0.2769(2) [46].

C. Nature of the poisoned states

Given the vast number of possible absorbing
configurations (AC’s), it is of interest to examine the
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FIG. 15. Steady-state densities of open sites ((J) and particles
(M) vs p. Error bars are smaller than the size of the symbols.
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In (pc-p)

FIG. 16. Inp,(0) and In(p,.—p,) (M) vs In(p. —p) for the
steady-state DR. The straight lines have slopes 0.286 (upper)
and 0.297 (lower).

properties of the AC’s generated by the DR near the crit-
ical point. Such information is also required as a prelude
to time-dependent simulations. We have seen that in an
AC occupied sites alternate with one- or two-site gaps.
In other words, an AC is characterized by &, the number
of particles, and a sequence g, . . . , gy of binary random
variables (g;=1 and 2, being the length of gap i). At
the minimum, we need to know the probability
p(1)=Prob[g=1] and the pair correlation C(n)
=(g,8;+n)—{g; % A set of 300 AC’s generated on an
(initially empty) lattice of 1000 sites at p, yielded
p(1)=0.625(3), C(1)=0.048(2), and C(i)=0 for i=2.
Thus AC’s generated by the critical DR are statistically
well characterized by the one-site probabilities and the
nearest-neighbor correlation, or equivalently by the tran-
sition probabilities p(i|j) (i,j=1,2).

D. Time-dependent scaling behavior

In time-dependent simulations one studies the evolu-
tion of the system, starting from a nearly absorbing
configuration, in this case one with a single open site.
For the DR and PCP there are of course many possible
near-absorbing configurations, and we shall investigate
several different kinds. To begin, we consider initial
states whose statistics match those of critical system-
generated AC’s. Sites 0O, +1, and —1 are initially vacant,
while sites 2,...,L form an absorbing sequence
OGOGO ..., where the first gap (i.e., site 3) is given
length 1 and all subsequent gaps are generated randomly
using the transition probabilities found in actual critical
AC’s. The absorbing sequence for sites —2,..., —L is
generated in the same manner. Thus the initial
configuration is statistically indistinguishable from a crit-
ical system-generated AC, with one open site inserted.
We performed 40000 realizations of the evolution at
p =0.2640, each starting from a different randomly gen-
erated initial configuration, and followed the survival
probability P(t¢), the mean number of open sites 7 (z), and
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TABLE 1. Exponents for time-dependent behavior of the critical DR with various kinds of initial
states, characterized by particle density p, ; and nearest-neighbor correlation C(1).

Directed percolation

Exponents 8 n z z—46—27
0.160(2) 0.314(3) 1.264(10) 0.006(24)
Dimer reaction model

Pp.i C(1) 8 n z z—45—2q
0.418 0.048 0.160(2) 0.304(4) 1.252(6) 0.008(22)
0.418 0 0.154(3) 0.305(3) 1.256(6) 0.030(22)
0.418 0.738 0.158(2) 0.298(4) 1.244(6) 0.016(20)
0.418 —0.563 0.160(2) 0.300(4) 1.256(6) 0.016(22)

0.5 0 0.205(5) 0.250(5) 1.240(6) —0.08(4)
0.38 0 0.133(2) 0.327(3) 1.258(10) 0.072(24)
% 0 0.107(2) 0.362(3) 1.267(6) 0.115(20)

the mean-square spread R %(¢) of open sites from the ori-
gin. Clear evidence of power-law behavior is observed,
with the exponents 8, 7, and z (obtained through analysis
of local slopes), close to the DP values (see Fig. 17 and
Table I). The off-critical reaction rates p =0.2639 and
0.2641 yield slight deviations from power-law behavior.

How are the exponents affected when we change the
correlation between neighboring gaps in the initial
configuration? We are unable to detect any significant
dependence upon the nearest-neighbor gap correlation
when we compare the “natural” (weakly correlated) case
with (1) C(1)=0, i.e., independent Bernoulli trials for the
gap lengths, (2) a high correlation, C(1)=0.738, or (3),
negative correlation, C(1)=-—0.5625. In summary,
starting from an initial configuration whose particle den-
sity matches that of a critical AC, the evolution of the
critical DR exhibits the same kind of power-law behavior
as directed percolation.

Next we investigate the effect of varying the particle
concentration in the initial configuration. For the maxi-
mally occupied initial state (...oxoxoooxoxo ...), the

In t

FIG. 17. InP(t), In7i(¢), and InR %(¢) vs Int for the critical DR
starting from various initial configurations. 0, p, ; =0.418; +,

=1. =1
Ppi= 73 X5 Ppi =3

evolution at p, again shows power-law behavior, but with
very different exponents: &=0.20, 7=0.26, and
z~1.246. Starting near the minimally occupied AC, the
exponents are again non-DP, but are skewed in the oppo-
site direction. These power laws are shown in Fig. 17.
Random initial configurations with particle density 0.38,
closer to but still less than the ‘““natural” value of 0.418(1),
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FIG. 18. Variation of the exponents 8, 7, and z with the ini-
tial particle density in the critical DR. Straight lines are least-
squares linear fits to the data.
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yield similar but smaller deviations in the exponent
values. That 8 increases while 17 and z decrease with in-
creasing initial particle density p,; is consistent with the
notion that it is more difficult for open sites to invade a
denser system. It appears that the exponent values vary
continuously with the initial particle density. The varia-
tion of z with p,, is rather small, but still significant.

Our findings on the exponents for time-dependent
behavior are summarized in Table I. We observe that the
1 and z values for the DR (starting with p,=0.418) are
slightly below the DP values, which may reflect that p_ is
slightly below 0.2640 (the steady-state results also suggest
this possibility). In any case the present data provide no
reason to doubt that the DR belongs to the directed per-
colation class. We also note that the hyperscaling rela-
tion dz=458+2n is violated by the DR starting from ini-
tial configurations with p, different from 0.418. Figure
18 shows that the exponents have an approximately
linear dependence upon initial particle density.

V. SUMMARY

Previous studies of critical phenomena at a transition
into a nonunique absorbing state [39—41] led us to expect
nondirected percolation behavior in the pair contact pro-
cess and the dimer reaction model. Thus the very clear
evidence of DP exponents for these models comes as a
surprise. On the other hand, the pair contact process and
the dimer reaction model may be described by a scalar
order parameter, such as the concentration of pairs in the
PCP, which vanishes identically in the absorbing states.
Our results thus provide further support of the idea [42]
that the DP conjecture can be extended to models with
infinitely many absorbing states, at least as long as the ab-
sorbing states can be uniquely characterized by the van-
ishing of a single quantity.

While the static critical behavior falls in the DP class,
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the time-dependent behavior does so only if we are care-
ful to provide an initial near-absorbing configuration
which matches the particle density in a critical, system-
generated absorbing configuration. Other initial densities
yield a family of nonuniversal, critical growth processes.
They are ‘critical” in that they exhibit power-law
behavior. But the exponents vary continuously with the
initial density, and violate the hyperscaling relation im-
plied by the basic scaling hypothesis [17]. These growth
processes are well defined, but only the ones with the
“critical” initial density appear to have a corresponding
stationary counterpart.

The one-dimensional versions of the PCP and DR,
models with rather different evolution rules, both fall in
the DP universality class. In light of this, further studies
of these models in higher dimensions, and of the models
proposed by Albano and Kohler and ben-Avraham,
would be of great interest. Note that the absorbing states
in the dimer-dimer and dimer-trimer models are uniquely
characterized by the vanishing of the density of nearest-
neighbor empty sites. Though the exponent estimates are
only marginally consistent with directed percolation, it
does not seem impossible that these models also belong to
the DP universality class. The non-DP behavior of the
model proposed by Grassberger, Krause, and von der
Twer [39], and of BAW’s with an even number of
offspring [37], may be due to the additional conservation
law (particle number conserved modulo 2) not present in
other models.
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